본문 바로가기

분류 전체보기154

[Spring] Swagger UI 대신 Scalar API Reference를 사용하여 API 문서 사용하기 Scalar API Reference는 Swagger UI를 대체할 수 있는 또다른 API 문서화 방법이다. Swagger UI와 비교하였을 때 화면 구성이 깔끔하기도 하며 API를 호출할 때 Postman과 같은 편리한 UI를 제공해줘서 개인적으로는 Swagger UI의 대체제로써 훌륭한 선택이라는 생각이다. 이번 포스팅에서는 Spring Web MVC 프로젝트에서 Scalar API Reference를 사용하는 방법에 대해 알아보도록 하겠다. (코드 예제는 여기에서 확인할 수 있다)  0. Scalar Quickstart 살펴보기먼저 어떻게 Scalar API Reference를 사용하면 좋을지를 알아보기 위해Scalar repository README에 있는 Quckstart를 살펴보자. .. 2024. 10. 29.
CodeGPT로 IntelliJ에서 Ollama LLM 사용하기 LLM은 업무의 방식을 바꿔놓은지 오래 되었다.내가 하고 있는 작업에 대해 의견을 물어보면서 업무의 도우미 역할도 해주고, 새로운 기술을 배울 때에도 구글 검색보다도 더 편리하고 빠르게 예제를 보여준다.또한 LLM을 통해 코딩 업무를 직접적으로 도움 받을 수 있는 서비스 또한 여럿 나왔는데, 대표적으로 Github의 Copilot과 Jetbrains의 AI Assistant가 있다. 하지만 보안 상의 이유로 외부 LLM을 사용하기 힘든 경우가 있을 수 있는데, 이때 local LLM을 사용하여 LLM의 도움을 받을 수 있다. 이번 포스팅에서는 IntelliJ의 CodeGPT plugin을 사용하여 Ollama 환경에서 설치한 local LLM을 통해 copilot 기능을 활용하는 방법에 대해 알아보도록 .. 2024. 9. 11.
🤗 Transformers - CLIPModel fine-tuning 앞서 image classification을 하는 예시를 통해 🤗 Transformers의 CLIPModel의 사용법을 알아보았다. - 참고 이번에는 CLIPModel을 custom dataset에 맞춰 fine-tuning하는 예제에 대해 알아보도록 하겠다.(전체 코드는 여기에서 살펴볼 수 있다) 개요데이터모델을 훈련시키기 위해서 image-text pair 데이터가 필요하다.여기서는 CIFAR10 데이터셋을 사용할 것이고, image의 label을 통해 text를 생성하여 pair 데이터를 만들어 사용할 것이다. 이 포스팅에서는 CIFAR10 데이터셋을 사용하였지만 이미지 사이즈도 작기도 하고 class도 10개로 매우 적기 때문에 실제로는 fine-tuning을 적용하기엔 부적합하다.예시를 보여주.. 2024. 8. 15.
🤗 Transformers - CLIPModel을 사용한 Image Classification CLIP(Contrastive Language-Image Pretraining) 모델은 multi-modal(text, image) embedding 모델로Contrastive Learning를 사용하여 text와 image를 같은 공간에 임베딩할 수 있게하는 모델이다.  CLIP 모델의 흥미로운 점은 Contrastive Learning를 통해 학습한 모델이,image classification task에 있어서 zero-shot 성능이 탁월하다는 점이다. 이번 포스팅에서는 image classification 예제를 통해 🤗 Transformers CLIPModel의 사용법을 익혀보도록 하겠다. 코드는 여기에서 확인할 수 있다. 개요먼저 어떻게 image classification을 진행할지를 살.. 2024. 8. 14.
Various Normalizations on CNN Normalization 기법은 Batch normalization 부터 시작하여 다양하게 분화되고 사용되고 있다.이러한 normalization 기법들이 CNN에서 어떻게 적용되는지 확인해보도록 하자.  기본적으로 normalization은 feature들에 대해서 scaling을 해주는 것이다.그리고 각 기법에 따라 어떤 feature를 대상으로 normalization을 할지가 달라지게 된다. CNN은 convolutional filter를 통해서 이미지로부터 여러 feature map을 얻게된다. CNN에서의 normalization은 이 feature map의 값에 대해서 적용한다.feature map에 대해 각각 normalization이 어떻게 적용되는지를 시각화해보면 아래와 같다.  Bat.. 2024. 8. 7.
[논문 구현] Auto-Encoding Variational Bayes (Varitional Auto Encoder) 앞서 VAE에 대해 이론에 대해 살펴보았다. (논문 리뷰)이제 이를 어떻게 PyTorch 코드로 구현할 수 있는지에 대해 알아보도록 하겠다. 논문에서는 흑백 이미지를 사용했지만 여기서는 컬러 이미지인 CelebA 데이터셋을 사용하도록 하겠다. 해당 코드는 여기에서 살펴볼 수 있다.  Baseimport base librariesimport torch, torchvisionfrom torch import nnimport numpy as npimport torch.nn.functional as F Configuration parameters설정과 관련된 값들과 hyperparameter 등을 정한다.이미지 크기는 빠른 학습 결과를 보기위해 100x100으로 해두었다.원래 사이즈는 178×218 이다.late.. 2024. 8. 5.